1724

IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 37, NO. 11, NOVEMBER 1989

Infinite Elements for the Analysis of Open
Dielectric Waveguides

MARC J. McDOUGALL aA~D J. P. WEBB, MEMBER, IEEE

Abstract — The finite element method is applied to the modal analysis of
unbounded, arbitrarily shaped, and arbitrarily inhomogeneous dielectric
waveguides with the use of new infinite elements incorporating several
radially decaying exponential trial functions. The outer optimization loop
required by previous methods employing a single decaying trial function is
eliminated and all modes corresponding to a given phase constant are
calculated in one pass of the solver. The method is tested with examples of
slab, circular, and square dielectric waveguides.

I. INTRODUCTION

ARIOUS USEFUL unbounded dielectric waveguide
Vstructures (e.g. optical fibers, planar diffused guides)
have been proposed or fabricated which have irregular
shapes or permittivity distributions. The modal fields of
these guides are described by the vector Helmholtz equa-
tion. Finding a closed-form analytical expression for the
modes of these unbounded guides is usually impossible
unless the waveguide geometry and the permittivity profile
are identical with the coordinate curves of a coordinate
system in which the Helmholtz equation is separable. The
application of a numerical method is the only recourse for
solving the general dielectric waveguide problem.

A new infinite element is presented for the modal analy-
sis of a general class of unbounded translationaily symmet-
ric dielectric waveguides. This class includes unbounded
dielectric guides with arbitrarily shaped cross sections and
arbitrarily inhomogeneous permittivity profiles. It is ap-
plied here to sourceless, lossless, isotropic guides with
uniform permeability p = p,,. For brevity, members of this
class shall be referred to simply as open guides.

II. THE FEM AND THE UNBOUNDED VECTOR
HELMHOLTZ EIGENPROBLEM

In the following, a field time dependence of e/“' is
assumed and c is the speed of light in vacuo. In terms of
the magnetic field intensity phasor H(x, y, z), the relative
permitivity €,, and the wavenumber k,= w/c, the vector
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Of the numerous numerical techniques that have been
proposed for the analysis of closed dielectric guides, the
finite element method (FEM) has achieved wide accep-
tance because of its ability to accommodate inhomoge-
neous materials [1]-[3]. Another advantage of the FEM is
that it reduces algebraically to the linear eigenproblem
Aa = A Ba, for which efficient and reliable solution tech-
niques are available. Since regular elements are of finite
size and cannot be used to mesh infinite regions, the FEM
must be adapted with some special technique to solve
unbounded problems.

One approach is to couple the FEM to another method
more suitable for an unbounded region such as function
expansions [4] or integral equations [5], [6]. These tech-
niques are used in the the exterior region, which is usually
homogeneous, while the FEM is applied to an interior
region which includes all inhomogeneity. Unfortunately,
these hybrid methods have the disadvantage of removing
the linearity of the algebraic problem. Instead of solving a
generalized eigenvalue problem, the solutions must be
found by a costly search for the roots of a determinant and
the solutions must then be verified carefully to ensure that
no roots are omitted. To date, no one has described a
hybrid method based on the three-component H formula-
tion [7], [8] which preserves linearity.

To preserve the linearity of the FEM, the following
methods have been proposed. The virtual boundary tech-
nique [9] consists of enclosing the open guide in a conduct-
ing box whose dimensions are large in comparison to the
size of the core region and meshing the entire problem
with finite elements. The drawback is that, for a given
accuracy, the correct location of the virtual boundary is
unknown, although it can be determined iteratively [10].
Also, the exterior mesh must be made very large near
cutoff, which results in a very large algebraic problem to
solve. The conformal mapping method of Wu and Chen
[11] can only be applied to open guides having a plane of
symmetry. The ballooning method employs a recursive
meshing technique for the exterior region, but this method
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Fig. 1. The infinite element in (a) the x-y plane and (b) the §-9
plane,

seems to be applicable only to the Laplace problem [12],
{13] and the scalar Helmholtz eigenproblem [14].

In the method of infinite elements, the interior region is
meshed with finite elements while the exterior is meshed
with elements having infinite area. A discussion of this
method follows.

III. INFINITE ELEMENTS FOR OPEN GUIDES

Many infinite elements have been proposed [15]-[18]
for solving deterministic (i.e., noneigenvalue) unbounded
problems such as the Laplace equation. For these prob-
lems, the asymptotic behaviour of the solution is in general
known in advance and an approximately correct decaying
trial function can be defined inside each infinite element.
In the case of the vector Helmholtz equation, however, the
selection of trial functions is much more difficult since the
asymptotic behavior is different for each mode and varies
with the frequency.

For the analysis of open guides, Yeh et al. [19] used the
FEM with parametric infinite elements which incorporated
a radial trial function of the form y=e¢"% where a> 0.
The asymptotic field behavior is therefore specified by the
decay length 1/«, which is globally defined for the whole
problem. Because at the outset the correct decay is un-
known, an outer iteration loop was added to the FEM
which optimized the « parameter for each mode of
interest.

Rahman and Davies [20] employed similar elements
whose decay was specified in the x direction by e™*/*~ or
in the y direction by e ?/L» or in both by e~ */%x~¥/Lv_ The
decay lengths were optimized in an outer iteration loop, as
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with Yeh er al. Methods such as these which employ
infinite elements incorporating an optimized single expo-
nential decay per coordinate in each element will be
referred to as optimized single decay (OSD) methods. Al-
though it was formulated for the scalar Helmholtz prob-
lem, the two techniques proposed by Hayata ef al. [21] are
also OSD methods which iterate to the optimal exponen-
tial decay parameter efficiently by using either the previ-
ous eigenvectors or the previous eigenvalue to calculate the
next estimate of the decay length.

The infinite element method presented here makes the
above decay length optimization unnecessary and con-
serves the linearity of the FEM. The interior region of the
guide, which contains all inhomogeneity, is meshed with-
triangular finite elements [22] and the exterior of the guide
is meshed with infinite elements whose shape results from
the mapping of a semi-infinite strip in the £~7 into the
x -y plane (see Fig. 1) using the following mapping func-
tion:

+1
x = x( 5 a-4 y= yl( )(1 £)

1- 1-

+ x5( )(1 ) + o (—— )(1 )
1+ 1+

+ x4( n)é +y3(—-2l)€
1-1q 1-7q

+ x4(~——)€ + y4(—2-)$ 2

The trial functions defined in the finite elements are poly-
nomials of order N which are interpolatory at N,= (N +
1)Y(N +2)/2 regularly spaced nodes. Each infinite element
is adjacent to a finite element, as shown in Fig. 1(a), and
has N+1 nodes along their shared edge. The infinite
element trial functions are defined in terms of the (£, 1)
variables as follows:

N+1

H(m,£) = X () (Yuud + Vuyd — j¥uck)

u=1

(3)

where the () and (v,,(£), v,,,(£), Y.(£)) functions rep-
resent the azimuthal and radial dependences respectively

of the trial function associated with node u. An axial
dependence of e /¢ is assumed, where B is the phase
constant; therefore the magnetic field phasor is given by
H =He /%2 For continuity of the fields across the edge
shared with the triangular element, the ¢ (7) are defined
in manner similar to the triangular element trial functions:

1+ 1—n
Y, (n) = Puﬁl(T)PN«Fl—u(—_z__)

N
= Z Cuknk (4)
k=0
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where

d
Il ifd>1

g=1

P,(v)= (5)

(Nv—q+1
q

if d=0.

The (v,,(£),7,,(£),7,.(§)) functions consist of linear
combinations of exponential decays with weights (a
a )where (1<u<N+1;0<m<qg—1)

umx*
umy’aumz
g—1
_ —-¢/L —¢/L,—e~&/L
Yux = Qu0x€ 4 o+ Z aumx(e & N 0)
m=1
q-—1
_ —£/L —-¢/L,, _ ,—§/L
Yu_v_auO_ve & o+ Z aumy(e 4 € 4 0)
m=1
g—1
—¢/L —¢/L —¢/L
Yuz=au026 4 0+ Z aumz(e & m—e & 0)'

m=1

(6)

The decay lengths (Ly, Ly,--+, L, ;) are selected to
specify a range of decays that will allow the
(Yux(8): 7., (€), 7,..(§)) trial function to adequately model
the asymptotic behavior of all modes of interest simultane-
ously. These decay lengths are not optimized, so the method
is called the multiple fixed decay (MFD) method. The
addition of the unknown variables (a,,,., @, @umzs 1 < u
<N+1; 1sm<g—1) does increase the problem size
relative to the OSD method and therefore also increases
the execution time of the eigenvalue solver, but this is
offset by the removal of the outer optimization loop and
by the fact that all p modes are found in one execution of
the solver.

Iv.

In the following, the symbol £ represents the cross
section of the open guide which is in the x— y plane (the z
axis is the axis of the guide). The perfect electric and
magnetic boundary contours are represented by the nota-
tion 92, and JQ,, respectively. The FEM formulation
uses Berk’s functional [7] with an added penalty term for
the elimination of spurious modes [8], [23]-[25]:

IMPLEMENTATION

[(v XH)*-;(V X H)+

r
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where r =yx>+ y2. The boundary conditions (10), (11),
and (12) are far-field boundary conditions [25]. The FEM
consists in inserting the trial functions of the meshed
problem region into the functional; the eigenvalues are
then obtained by taking the first variation of the func-
tional and solving the resulting generalized eigenvalue
equation.

The substitution and integration of triangular element
trial functions and the subsequent application of boundary
conditions are well documented elsewhere [22], [23]. The
expressions that result when the infinite element trial func-
tions are substituted into (7) are given in the Appendix.
When expanded, both the numerator and the denominator
consist of sums of integrals of the following form:

Lop (L) = f_ll fo Ceigetredgdn (13)

where
a=0,1,2
b=0,1,---,(2N+2)
c=—1,0,1

and J is the Jacobian of the mapping from the (x, y) to
the (£, n) domain:

=[ I(x, y)

— T e T,
8(5,7]) 1 2 3

(14)

Numerical integration is not employed to evaluate these
integrals since no Gauss cubature rule with error bounds
exists for this integral, which makes the number of Gauss
points required uncertain. Instead, the integrals are calcu-
lated using a semiclosed formula [26, p. 321]. In order to
simplify the code, all the infinite elements are shaped in a
way that makes J; in (14) vanish. All infinite element
shapes whose Jacobian satisfies J, = 0 are symmetric about
the line n = 0 in the x—y plane (see Fig. 2(b)). This is not
restrictive since the region occupied by any infinite ele-
ment can be meshed by a symmetric infinite element in

- (Vv-H)*(v-H)dxdy

Fmin

k3(H) =

()

_/;)H*-dedy

where k, is the wavenumber and ¢, ,, is the minimum
relative permittivity. The essential conductor and far-field
boundary conditions are

HXn=0 on 39, (8)
H-n=0 ondQ, 9)

lim VrH=0 (10)

lim Vrv X H=0 (11)
lim Vrv-H=0 (12)

combination with triangular finite elements (see the exam-
ple in Fig. 2). The problem size is increased slightly by the
addition of the finite elements but this simplifies im-
mensely the code required to integrate the infinite ele-
ments.

A Fortran program called OMAX was written to imple-
ment the MFD method. The program accepts as input a
data file which describes the problem mesh, the material
permittivities, the boundary conditions, and the desired
phase constants 8. For each B, it assembles the global
matrices, solves the generalized eigenvalue problem, and
outputs a list of the lowest p eigenvalues.
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Fig. 2. The asymmetrical infinite elements I, - I, in (a) are converted to
symmetrical infinite elements J{ -7/ in (b) with the addition of finite
elements F,—F,.

V. THE SELECTION OF DECAY LENGTHS

The g fixed decay lengths (L, Ly,- -+, L,_,) that are
supplied to the trial functions of each infinite element are
selected automatically by the OMAX program. In the
examples, g is set to either 5 or 6 with good results.
Increasing g causes more radial trial functions to be allo-
cated to each infinite element, which tends to reduce the
error in the results but also increases the computation
time.

The decay length selection algorithm starts by calculat-
ing an estimate L _,, of the shortest decay length required
to model any mode for a particular choice of the phase
constant 8. Let ¢, and ¢, be the maximum relative
permittivity of the problem (usually located in the core)
and the minimum relative permittivity (usually in the
infinite region) respectively. Now for an open guide con-
sisting simply of a circular homogeneous core (of any
radius) of relative permittivity €, ., surrounded by a
cladding of relative permittivity e, .., the following rela-
tion holds [27, p. 367]: .

(15)

[max (1)]* = (€, max — € min) K3

where h=y/B% — ¢,k is the transverse wavenumber in the
cladding. Putting this in terms of max(%) and S only,

[max (h)]* = (1— —““—)B (16)

r max

The asymptotic radial behavior of the fields for this
guide is e " /Vhr [28, p. 297], and therefore an estimate
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Fig. 3. The slab waveguide example with added magnetic walls.

L. of the shortest decay length is
I 1 1
mmn — max(h) - € min 12 -
Bk

Fmax

(17)

Starting with this estimate, the decay lengths are gener-
ated by repeated multiplication by the coefficient C,:

L, =CL,.

(18)

The user-selected parameter C, therefore controls the
distribution of the decay lengths. For all the test examples,
it is set to the value 10. This value causes OMAX to
specify decay lengths which are very large relative to the
core dimensions of the guides, and thus permits the model-
ing of the modes very near to cutoff.

Since the fields may have features which are small in
comparison to max (%), the user can specify a number N,
of near-field decay lengths. These are also generated from
L. by successive division by C,. In summary, all decay
lengths are generated by the formula

L1=me(cd)l,an’ l=0,1,"‘,(q—1). (19)

Most of the computation time is spent assembling the
infinite element global matrix contribution and solving the
generalized eigenvalue problem. Although the global ma-
trices are sparse and a solver which made use of sparsity
would be more efficient, a dense matrix solver was used
for the tests below. The solver is composed of EISPACK
routines [29] which convert the generalized eigenvalue
problem to a standard eigenvalue problem, tridiagonalize
the resulting matrix, and then use Sturm sequencing to
locate the eigenvalues.

VI. EXAMPLES
A. The Slab Waveguide

As a simple example and test of the MFD technique,
consider the problem of determining the TM modes with
no x variation of the slab waveguide shown in Fig. 3. The
guide consists of a homogeneous dielectric film with rela-
tive permittivity €,, =3 and thickness ¢, deposited on a
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Fig. 4. The slab waveguide results using the mesh of Fig. 3, second-order
triangles, €,, =3.0, ¢,, =10, ¢=6, C; =100, N,; =2, s=1.0, 8=

B/ko. V= tkgJe — €5, and b=1/10.
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Fig. 5. The circular dielectric waveguide example.

conducting plane located at y = 0. The surrounding homo-
geneous cladding has relative permittivity ¢,, =1. The de-
sired modes can be found by adding two perfect magnetic
boundary walls and meshing the region between them (see
Fig. 3). If the distance b between the magnetic walls is set
to a value small relative the the film thickness z, then the
lowest modes are those with no x variation.

The results from the OMAX program with second-order
triangles and six decays are shown in Fig. 4; the nor-
malised B versus V coordinates are used. The analytical
solutions are shown as the solid lines. Very close agree-
ment is obtained for the lowest modes from cutoff to the
highest frequencies shown on the graph.
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Fig. 6. The circular dielectric waveguide results using the mesh of Fig.
5, third-order triangles. m =1/¢,) =1.53, ny =y/¢,, =150, g=35, G, =
10.0, Ny =2, s =1.0. B=B/kg, and V' = akgy/e,y —¢€,5.
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Fig. 7. The square dielectric waveguide example.

B. The Circular Dielectric Waveguide

The next example is the weakly guiding circular wave-
guide with interior and exterior refractive indices of n;
=€, =1.53 and n, =\/; =1.50, respectively, and radius
a. Closed-form analytical solutions to the modes of this
guide, designated TM,,, TE,,, EH,,, and HE , (where
u,v=1,2,...) are known [30, p. 225]. To reduce the prob-
lem size, only one quarter of the problem is meshed as
shown in Fig. 5; the mesh is composed of 12 triangular
and four infinite elements. The modes that result from the
imposition of magnetic conductor boundaries on edges 1
and 2 respectively are shown in Fig. 6; both the OMAX
and the analytical results are given. The results are most
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Fig. 8. The square waveguide results using the mesh of Fig. 7, second-

order triangles, n;=\/¢,; =1.50, n,=\/¢,, =1.00, ¢=5, C,=10.0,
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Fig. 9. The mesh used for the OSD method results shown in Fig. 10.

accurate at cutoff and toward the higher frequencies, and
the maximum error in k, for all the modes shown is 0.03
percent. The global matrix order was 325.

C. The Square Dielectric Waveguide

Using point-matching, Goell [31] calculated the disper-
sion curves of the modes of the square dielectric waveguide
for which no exact analytical solutions are available. As
with the circular waveguide, a quarter mesh was used (Fig.
7) and three distinct pairs of edge 1 and 2 boundary
conditions were applied separately. In Fig. 8 the OMAX
results compare well with the point matching results.

With the boundary conditions on edges 1 and 2 both set
to 9%, the execution time for each B value was 12

minutes on a VAX 8650 and the order of the global

matrices was 338.

D. A Comparison of the MFD and OSD Techniques

The drawback of the OSD method is that the single
" decay length L must be optimized, particularly near cut-
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off. This is illustrated in Fig. 10. Each solid line is a plot of
the normalized frequency bk, of the fundamental mode
versus b/L, for one particular value of b8, computed by
the OSD method using the mesh of Fig. 9. There are 12
such lines, for b8 values ranging {rom 1 to 3.75. The need
for optimization with the OSD technique is made apparent
by the severe variation of the frequencies with decay
length.

The results of the MFD method applied to the mesh of
Fig. 7 are included for comparison (they are horizontal
since they do not vary with »/L). Although the mesh is
smaller, the results of the MFD technique compare very
well with the optimum OSD results.

VIL

In extending the FEM to accommodate open guides
through the use of infinite elemerits, the need to optimize
the decay lengths for each mode is eliminated by incorpo-
rating several fixed decay trial functions into each infinite
element. The first p modes can be calculated in just one
pass of the solver.

CONCLUSIONS

APPENDIX

The contributions to the global matrix from an infinite
element can be calculated by first decomposing the func-
tional (7) into three integrals:

1
I,(H) =f9(v X H)* —(v X H) dxdy

L(H) =f9(v-H)*(v-H)dxdy

L(H)= fQH*-dedy. (20)

The contributions to each integral corresponding to each
pair of unknown weight vectors (d,,,., @,my> @um;) and

(@umrxs Aumrys Ame;) (s€€ (6)) are then given by Tables I,
II, and III. In these tables,
U

x — 8,

ump,u'm’'p’ = ump,u'm'p’ ump,u'Op’
- 8m0%u0p, wm'p’ + 8m08m’0%u0p, w'0p’
I/ump, wm' ump,u'm’ 8m'04//1‘4mp, u'Q
- 8m0%40p, w'm’ + 6mO(Sm’OIVt;Op, u'0
I/Vum. wm' = %m, wm' Sm’O’”VL‘lm, w0 8m01/1'40, u'm’
+ 8m06m’0%10, w0
p,p=xory. (21)

In these expressions, §,, is the Kronecker delta and

¥

ump,u'm’*

/4

ump,u'm'p’s
and
W

um, u'm’
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Fig. 10. A comparison of the OSD and MFD techniques for the funda-
mental mode of the square waveguide. The solid curves illustrate the
variation of bk, with b/L using the OSD technique for the 12 values
of normalized phase constant 58 shown on the right. The dashed lines
represent the results of the MFD technique with six fixed decays for
the same values of bB.
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TABLE IV
THE C,; COEFFICIENTS
E=0 k=1 k=2 k=3 k=4
1% order u=1 1/2 1/2 — — —
(N=1) u=2 1/2 -1/2 — — —
2°4 order u=1 0 1/2 1/2 — —
(N=2) u=2 1 0 -1 _ _
u=3 0 -1/2 1/2 — —
3 order u = ~1/16 -1/16 9/16 9/16 —
(N=3) we=2 9/16 27/16 -9/16 | -27/16 —
u=3 9/16 -27/16 | -9/16 27/16 —
wu=4 | -1/16 1/16 9/16 -9/16 —
4 order u=1 0 -1/6 -1/6 2/3 2/3
(N=4) u=2 0 4/3 8/3 -4/3 -8/3
u=3 1 0 -5 0 4
u=4 0 -4/3 8/3 4/3 -8/3
u=5 0 1/6 ~1/6 -2/3 2/3
TABLE V
THE a,, COEFFICIENTS
1=10 =1
p==z sy -y2) -y 4y2+ys 1)
p=y | 3{(-z1+2) Loy ~zg — 23+ 34)
TABLE VI
THE b,, COEFFICIENTS
1=0 i=1
p=z sy +y2 —ys - ys) 3y -y2 —ys +9s)
P=y %(—$1—$2+$3+3¢4) %(—I1+$2+13—I4)

TABLE I
Tue CONTRIBUTION TO THE INTEGRAL [
Ay'mi'z Gyimty Cyim!z
1 (8 Wamrs 1 1
Cuma c L Uimgimis | =2 BVirmisum
+ Umy,armiy ) " i
(B W wimt
Gumy - LA —— € ( e - BVumiyum
hid + Uumz,u'm’r) r
1
A Uumy,uwm’
Gum: | 2 B Vame ~ 2 BVamy e (Uumgtnts
" " + Uuma:,u’m’r)
TABLE II
THE CONTRIBUTION TO THE INTEGRAL I,
Qu'm'z Qu'm'y Gu'm'z
Gumaz Vimz,wm s Uimz,utmry - BVumz,um
Qumy Uumy,u’m’z Uumy,u’m’y -8 Vumy,u’m’
Cumz - ﬂVu’m’z,um - ,BVu’m’y,um ﬁ2 Wum,u’m’
TABLE III
THE CONTRIBUTION TO THE INTEGRAL I
Au'm's Qy'm'y Au'm'z
Qymz Wum,u’m’ 0 0
Qumy 0 Wum,u’m’ 0
Gumz 0 0 Wum,u’m’

are given by

1

Cukal Z [klbpsz’jIO,k+l+z+j—2,71(L)
0 i,j=0

- kbpzap’JI],k+l+i—1,—1(L)
- laplbp'jli,k+l+j—1,_l(L)

+ aptbp’jIH—j.k-H, 71(L)]

% —_

ump,um’p’ =

k.

M=

N 1
’Vl;mp.u’m’z Z Cukal Z [kbplIO.k-H-H—l.O(L)
k,I=0 i=0

- aptIO,k+1+1,0(L)]

N
%m,u’m': Z CukCUIIO,k+l,1(L)‘ (22)
0

kyl=

In these, the integral I is given by (13) and

1 1
__+—
L L,

n m

~1
L= (23)
The C,, for orders 1 to 4, which are the polynomial

coefficients in (4), and the a, and b,, coefficients are
given by Tables IV, V, and VI.
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Lastly, the Jacobian coefficients J;, J, and J; in (14) are

expressed in terms of the a,

(1]

(4]
(5]
(6]

(7

(8]

[10]

(11]
[12]
[13]
{14]
{13]

(16]

;and b,; as
J1=by0a,0~ byt

J2 = byOaxl - beayl

(24)

J3 == aylaxO + axlayO‘
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