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Infinite Elements for the Analysis of Open
Dielectric Waveguides

MARC J. McDOUGALL AND J. P. WEBB, MEMBER, IEEE

,&tract —The finite element method is applied to the modal analysis of

unbounded, arbitrarily shaped, and arbitrarily inhomogeneous dielectric

waveguides with the use of new infinite elements incorporating severaf

radially decaying exponential trial functions. The outer optimization loop

required by previous methods employing a single decaying trial function is

eliminated and afl modes corresponding to a given phase constant are

calculated in one pass of the solver. The method is tested with examples of

slab, circular, and square dielectric waveguides.

I. lNTRODUCTION

v ARIOUS USEFUL unbounded dielectric waveguide

structures (e.g. optical fibers, planar diffused guides)

have been proposed or fabricated which have irregular

shapes or permittivity distributions. The modal fields of

these guides are described by the vector Hehnholtz equa-

tion. Finding a closed-form analytical expression for the

modes of these unbounded guides is usually impossible

unless the waveguide geometry and the perrnittivit y profile

are identical with the coordinate curves of a coordinate

system in which the Hehnholtz equation is separable. The

application of a numerical method is the only recourse for

solving the general dielectric waveguide problem.

A new infinite element is presented for the modal analy-

sis of a general class of unbounded translationally symmet-

ric dielectric waveguides. This class includes unbounded

dielectric guides with arbitrarily shaped cross sections and

arbitrarily inhomogeneous permittivity profiles. It is ap-

plied here to sourceless, lossless, isotropic guides with

uniform permeability p = PO. For brevity, members of this

class shall be referred to simply as open guides.

II. THE FEM AND THE UNBOUNDED VECTOR

HELMHOLTZ EIGENPROBLEM

In the following, a field time dependence of eJW’ is

assumed and c is the speed of light in vacuo. In terms of

the magnetic field intensity phasor H(.x, y, z), the relative

permitivity c,, and the wavenumber lco = ti/c, the vector
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Hehnholtz equation is

(1)

Of the numerous numerical techniques that have been

proposed for the analysis of closed dielectric guides, the

finite element method (FEM) has achieved wide accep-

tance because of its ability to accommodate inhomoge-

neous materials [1]–[3]. Another advantage of the FEM is

that it reduces algebraically to the linear eigenproblem

Aa = ABa, for which efficient and reliable solution tech-

niques are available. Since regular elements are of finite

size and cannot be used to mesh infinite regions, the FEM

must be adapted with some special technique to solve

unbounded problems.

One approach is to couple the FEM to another method

more suitable for an unbounded region such as function

expansions [4] or integral equations [5], [6]. These tech-

niques are used in the the exterior region, which is usually

homogeneous, while the FEM is applied to an interior

region which includes all inhomogeneity. Unfortunately,

these hybrid methods have the disadvantage of removing

the linearity of the algebraic problem. Instead of solving a

generalized eigenvalue problem, the solutions must be

found by a costly search for the roots of a determinant and

the solutions must then be verified carefully to ensure that

no roots are omitted. To date, no one has described a

hybrid method based on the three-component H formula-

tion [7], [8] which preserves linearity.

To preserve the linearity of the FEM, the following

methods have been proposed. The virtual boundary tech-

nique [9] consists of enclosing the open guide in a conduct-

ing box whose dimensions are large in comparison to the

size of the core region and meshing the entire problem

with finite elements. The drawback is that, for a given

accuracy, the correct location of the virtual boundary is

unknown, although it can be determined iteratively [10].

Also, the exterior mesh must be made very large near

cutoff, which results in a very large algebraic problem to

solve. The conformal mapping method of Wu and Chen

[11] can only be applied to open guides having a plane of

symmetry. The ballooning method employs a recursive

meshing technique for the exterior region, but this method
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Fig. 1. The infinite element in (a) the x-y plane and (b) the ~-q
plane,

seems to be applicable only to the Laplace problem [12],

[13] and the scalar Helmholtz eigenproblem [14].

Inthemethod ofinfinite elements, theinterior region is

meshed with finite elements while the exterior is meshed

with elements having infinite area. A discussion of this

method follows.

III. INFINITE ELEMENTS FOR OPEN GUIDES

Many infinite elements have been proposed [15] -[18]

for solving deterministic (i.e., noneigenvalue) unbounded

problems such as the Laplace equation. For these prob-

lems, the asymptotic behaviour of the solution is in general

known in advance and an approximately correct decaying

trial function can be defined inside each infinite element.

In the case of the vector Hehnholtz equation, however, the

selection of trial functions is much more difficult since the

asymptotic behavior is different for each mode and varies

with the frequency.

For the analysis of open guides, Yeh et al. [19] used the

FEM with parametric infinite elements which incorporated

a radial trial function of the form y = e – a’ where a >0.

The asymptotic field behavior is therefore specified by the

decay length I/a, which is globally defined for the whole

problem. Because at the outset the correct decay is un-

known, an outer iteration loop was added to the FEM
which optimized the a parameter for each mode of

interest.

Rahman and Davies [20] employed similar elements

whose decay was specified in the x direction by e – “LX or

in the y direction by e–Y/Lp or in both by e– “LX “’L’. The

decav lengths were o~timized in an outer iteration loom as

with Yeh et al. Methods such as these which employ

infinite elements incorporating an optimized single expo-

nential decay per coordinate in each element will be

referred to as optimized single decay (OSD) methods. Al-

though it was formulated for ths scalar Hehnholtz prob-

lem, the two techniques proposedl by Hayata et al. [21] are

also OSD methods which iterate to the optimal exponen-

tial decay parameter efficiently by using either the previ-

ous eigenvectors or the previous eigenvalue to calculate the

next estimate of the decay length. -

The infinite element method presented here makes the

above decay length optimization n unnecessary and con-

serves the linearity of the FEM. The interior region of the

guide, which contains all inhomogeneity, is meshed with.

triangular finite elements [22] and the exterior of the guide

is meshed with infinite elements whose shape results from

the mapping of a semi-infinite strip in the $ – q into the

x – y plane (see Fig. 1) using the following mapping func-

tion:

l+q 1+’?J
x = Xl(y)(l– &) Y = Yl( y)(l-t)

l–q l–q
+x2(y)(H +Y2(y)(l–$)

l+?J l+TJ
+ X3( --@ + Y3( y)f

l–q
+ Y4( y)’$ (2)

The trial functions defined in the finite elements are poly-

nomials of order N which are in terpolatory at iVO= (N+

1)(N + 2)/2 regularly spaced nodes. Each infinite element

is adjacent to a finite element, as shown in Fig. l(a), and

has N + 1 nodes along their shared edge. The infinite

element trial functions are defined in terms of the ($, O)

variables as follows:

where the ~U( q) and (yUX(&), yU,($), Ytiz(&’)) functions rep-

resent the azimuthal and radial dependence respectively

of the trial function associated with node u. An axial

dependence of e-J@ is assumed, where ~ is the phase

constant; therefore the magnetic field phasor is given by

H = He-J~z. For continuity of the fields across the edge

shared with the triangular elemmt, the $.(q) are defined

in manner simlilar to the triangular element trial functions:

‘u(”)=pu-l(%)p~+l-(
N

= ~ CUJ
k=O

(4)
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where

EJv,=(!ir-;+’)if~>l ,5,

\l ifd=O.

The (Y~~($), Y. ,(0 Y.,(g)) functions consist of hnear
combinations of exponential decays with weights (a .~X,

a umy* aUn,)where (l<u<N+l; O<m<q–l):

q–1

Y = a .OXe‘f/~O+ ~ aU~X(e –l/Lm–e–c/Lo
Ux )

~=1

q–1

m=l

q–1

?.== a .O.e
-f/Lo+ ~ aumz(e-f/Lm - e-~/LO). ((j)

~=1

The decay lengths (LO, -Ll,. . “, Lq _ J are selected to

specify a range of decays that will allow the

(Y.~(0, Y.Y(t), Y.,(0) trial function to adequately model
the asymptotic behavior of all modes of interest simuhane-

ously. These decay lengths are not optimized, so the method

is called the multiple fixed decay (MFD) method. The

addition of the unknown variables (a .nX, u.~,, a .~z; 1< u
< N +1; 1< m < q – 1) does increase the problem size

relative to the OSD method and therefore also increases

the execution time of the eigenvalue solver, but this is

offset by the removal of the outer optimization loop and

by the fact that all p modes are found in one execution of

the solver.

IV. IMPLEMENTATION

In the following, the symbol O represents the cross

section of the open guide which is in the x – y plane (the z

axis is the axis of the guide). The perfect electric and

magnetic boundary contours are represented by the nota-

tion d fi?, and 8 Llo, respectively. The FEM formulation

uses Berk’s functional [7] with an added penalty term for

the elimination of spurious modes [8], [23] -[25]:

Twhere r = x-+ y-. The boundary conditions (10), (11),

and (12) are far-field boundary conditions [25]. The FEM

consists in inserting the trial functions of the meshed

problem region into the functional; the eigenvalues are

then obtained by taking the first variation of the func-

tional and solving the resulting generalized eigenvalue

equation.

The substitution and integration of triangular element

trial functions and the subsequent application of boundary

conditions are well documented elsewhere [22], [23]. The

expressions that result when the infinite element trial func-

tions are substituted into (7) are given in the Appendix.

When expanded, both the numerator and the denominator

consist of sums of integrals of the following form:

Ia,,,C(L) = ~’ ~~e-C/L~aqhJcd.$dq (13)
–1 o

where

a=o,l,2

b=o,l,. . . ,(2N+2)

C=–l, o,l

and J is the Jacobian of the mapping from the (x, y) to

the ($, q) domain:

a(X, y)

‘= C3(g,-q)
=J1+JZ<+J3V. (14)

Numerical integration is not employed to evaluate these

integrals since no Gauss cubature rule with error bounds

exists for this integral, which makes the number of Gauss

points required uncertain. Instead, the integrals are calcu-

lated using a semiclosed formula [26, p. 321]. In order to

simplify the code, all the infinite elements are shaped in a

way that makes Jq in (14) vanish. All infinite element

shapes whose Jacobian satisfies J3 = O are symmetric about

the line q = O in the x – y plane (see Fig. 2(b)). This is not

restrictive since the region occupied by any infinite ele-

ment can be meshed by a symmetric infinite element in

J(VXH)*”; (V XH)+ :( V”~)*(V.H)dxdy

k:(H) = Q
r Ymm

J

(7)

H“ .Hdxdy
Q

where k. is the wavenumber and c, ~~ is the minimum combination with triangular finite elements (see the exam-
relative permittivity. The essential conductor and far-field ple in Fig. 2). The problem size is increased slightly by the

boundary conditions are addition of the finite elements but this simplifies im-

HXn=O on a flo (8)
mensely the code required to integrate the infinite ele-

ments.
H.n=O on a Q, (9) A Fortran program called OMAX was written to imple-

lim fiH = O (lo) ment the MFD method. The program accepts as input a
r+m data file which describes the problem mesh, the material

lim &vx H=O (11) pertittivities, the boundary conditions, and the desired
~4~ phase constants /?. For each ~, it assembles the global

lim ~v. H=O (12) matrices, solves the generalized eigenvalue problem, and
r+m outputs a list of the lowest p eigenvalues.
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Fig. 2. The asymmetrical infinite elements 11– 14 in (a) are converted to
symmetrical infinite elements Ii – IJ in (b) with the addition of finite
elements F. – Fk.

V. THE SELECTION OF DECAY LENGTHS

The q fixed decay lengths (LO, Ll, ” 0... L~_ J that are

supplied to the trial functions of each infnute element are

selected automatically by the OMAX program. In the

examples, q is set to either 5 or 6 with good results.

Increasing q causes more radial trial functions to be allo-

cated to each infinite element, which tends to reduce the

error in the results but also increases the computation

time.

The decay length selection algorithm starts by calculat-

ing an estimate l,~iu of the shortest decay length required

to model any mode for a particular choice of the phase

constant ~. Let c, mm and c. ~i. be the maximum relative

permittivity of the problem (usually located in the core)

and the minimum relative permittivity (usually in the

infinite region) respectively. Now for an open guide con-

sisting simply of a circular homogeneous core (of any

radius) of relative permittivit y c, ~= surrounded by a

cladding of relative permittivit y c. tin, the following rela-

tion holds [27, p. 367]:

where h = ~~ 2 – E~k~ is the transverse wavenumber in the

cladding. Putting this in terms of max ( h ) and ~ only,

()[max(h)]2= 1-> B’.
r max

(16)

The asymptotic radial behavior of the fields for this

guide is e-h~~ [28, p. 297], and therefore an estimate

I 1

m,$ -“f
6---+

h

Fig. 3. The slab waveguide example with added magnetic walls

l,~i. of the shortest decay length is

1 1
L=

(1

(17)
“n max(h) = crti~ 1/2 “

l--— P
cr max

Starting with this estimate, the decay lengths are gener-

ated by repeated multiplication by the coefficient Cd:

L ,+l=CJ,,. (18)

The user-selected parameter Cd therefore controls the

distribution of the decay lengths. For all the test examples,

it is set to the value 10. This value causes OMAX to

specify decay lengths which are very large relative to the

core dimensions of the guides, and thus permits the model-

ing of the modes very near to cutoff.

Since the fields may have features which are small in

comparison to max ( h ), the user can specify a number N.f

of near-field decay lengths. These are also generated from

Lm,n by successive division by Cd. In summary, all decay

lengths are generated by the formula

L,= Lm,n(cd)z-N”f, 2 =(),1,... ,(9-1). (19)

Most of the computation time is spent assembling the

infinite element global matrix contribution and solving the

generalized eigenvalue problem. Although the global ma-

trices are sparse and a solver which made use of sparsity

would be more efficient, a dense matrix solver was used

for the tests below. The solver is composed of EISPACK

routines [29] which convert the generalized eigenvalue

problem to a standard eigenvalue problem, tridiagonalize

the resulting matrix, and then use Sturm sequencing to

locate the eigenvalues.

VI. EXAMPLES

A. The Slab Waveguide

As a simple example and test of the MFD technique,

consider the problem of determining the TM modes with

no x variation of the slab waveguide shown in Fig. 3. The

guide consists of a homogeneous dielectric film with rela-

tive permittivity c,1 = 3 and tluckness t, deposited on a
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Isoq @ MFD (OMAX) — analyt~cd

v

Fig. 4. The slab waveguide results using the mesh of Fig. 3, second-o~er
triangles, C,l = 3.0, C,z= 1.0, q =6, Cd = 10.0, N,f = 2, .s= 1.0, ~ =

~/ko, V= tko~~, and b= t/10.

~ I= infinite element

/

a-

0 5 a

Fig. 5. The circular dielectric waveguide example.

conducting plane located at y = O. The surrounding homo-
geneous cladding has relative permittivity C,z = 1. The de-

sired modes can be found by adding two perfect magnetic

boundary walls and meshing the region between them (see

Fig. 3). If the distance b between the magnetic walls is set

to a value small relative the the film thickness t,then the

lowest modes are those with no x variation.

The results from the OMAX program with second-order

triangles and six decays are shown in Fig. 4; the nor-

malised ~ versus V coordinates are used. The analytical

solutions are shown as the solid lines. Very close agree-

ment is obtained for the lowest modes from cutoff to the

highest frequencies shown on the graph.

1 539

1 x MFD (OMAX) analytical

4 ,,,,

1/ /,.>
/

$
x

J A,/,
I 510 1

H&,I ~>~’

/

HE’;;;L’

I L’L,ff’ ‘::.,,.
!,” ., :,, ,,

v

Fig. 6. The circular dielectric wavegurde results using the mesh of Fig.
5, third-order triangles. nl =& =1.53, nz =& =1.50, q =5, Cd=

10.0, Nnf = 2, s =1,0. ~ =~/ko, and V= ako~~.

I /’x

0

1 = infinite element

I

— edge 1—

A

Fig. 7. The square dielectric waveguide example.

B. The Circular Dielectric Waveguide

The next example is the weakly guiding circular wave-

guide with interior and exterior refractive indices of nl
=fi=I.53 and n,= &=l.50, respectively, and radius
a. Closed-form analytical solutions to the modes of this

guide, designated TMOU, TEOU, EHUU, and HEUU (where

U, U=1,2 ,... ) are known [30, p. 225]. To reduce the prob-

lem size, only one quarter of the problem is meshed as

shown in Fig. 5; the mesh is composed of 12 triangular

and four infinite elements. The modes that result from the

imposition of magnetic conductor boundaries on edges 1

and 2 respectively are shown in Fig. 6; both the OMAX

and the analytical results are given. The results are most
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Fig. 8. The square waveguide results using the mesh of Fig. 7, second-

+

order triangles, nl = ~ =1.50, nz = C,2 =1.00, q = 5, Cd =10.0,

Nnf = 2, S =1.0, W = (kob/n) crl/cr2 –1 and ~z =[(/3/ko)2 –

11/[(s.1/%2) – 11.

? I = infinite element

/

o !! b

Fig. 9. The mesh used for the OSD method results shown in Fig. 10,

accurate at cutoff and toward the higher frequencies, and

the maximum error in kO for all the modes shown is 0.03

percent. The global matrix order was 325.

C. The Square Dielectric Waveguide

Using point-matching, Goell [31] calculated the disper-

sion curves of the modes of the square dielectric waveguide

for which no exact analytical solutions are available. As

with the circular waveguide, a quarter mesh was used (Fig.

7) and three distinct pairs of edge 1 and 2 boundary

conditions were applied separately. In Fig. 8 the OMAX

results compare well with the point matching results.

With the boundary conditions on edges 1 and 2 both set

to d $2., the execution time for each ~ value was 12

minutes on a VAX 8650 and the order of the global

matrices was 338.

D. A Comparison of the iVfFD and OSD Techniques

The drawback of the OSD method is that the single

decay length L must be optimized, particularly near cut-

off. This is illustrated in Fig. 10. Each solid line is a plot of

the normalized frequency bkO of the fundamental mode

versus b/L, for one particular value of b~, computed by

the OSD method using the mesh of Fig. 9. There are 12

such lines, for b~ values ranging from 1 to 3.75. The need

for optimization with the OSD technique is made apparent

by the severe variation of the frequencies with decay

length.

The results of the MFD method applied to the mesh of

Fig. 7 are included for comparison (they are horizontal

since they do not vary with b/L). Although the mesh is

smaller, the results of the MFD technique compare very

well with the optimum OSD results.

VII. CONCLUSIONS

In extending the FEM to accommodate open guides

through the use of infinite elements, the need to optimize

the decay lengths for each mode is eliminated by incorpo-

rating several fixed decay trial functions into each infinite

element. The first p modes can be calculated in just one

pass of the solver.

APPENDIX

The contributions to the global matrix from an infinite

element can be calculated by first decomposing the func-

tional (7) into three integrals:

~l(~)=j(v XII)*+7 xH)dxdy
Q ,,

12( H)=j(V.H)*(V.lY )dxdy
Q

13(H) = @*. Hdxdy. (20)
Q

The contributions to each integral corresponding to each

pair of unknown weight vectors (a .HZX,a .~Y, aUJ and

(a ~(m)X,autmrp, a ,,,m,z) (see (6)) are then given by Tables I,

II, and III. In these tables,

u – f?zump,~)m,pt– timo%ump, ~,~p,ump, u’m’p’ —

– &Ji2uop, #mtp/ + 8m08m/042uop, ~rop,

v – Vump, ~!m!– 8,nt&mp ~,.Ump, U’m’ —

– /lmowuop, ~m ‘ + %o%io%op ,.’0

w – Wunl, ~,m,– i5m10YY<m,~,. – timowuo, ~(wlrurn, u’m’ —

+ (3Wo(sn,,oy,o, ~q

p,p’=xory. (21)

In these expressions, i$,y is the Kronecker delta and

@ump, u’m’p’~ v Ump, u’m ’~

and

w urn, u’m’
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Fig. 10. A comparison of the OSD and MFD techniques for the funda-
mental mode of the square waveguide. The solid curves illustrate the
variation of bko with b\L using the OSD technique for the 12 values
of normalized phase constant b~ shown on the right. The dashed lines
represent the results of the MFD technique with six fixed decays for
the same vafues of b~.

TABLE I
THE CONTRIBUTION TO THF INTEGBAL 11

I %lny II-LUumz*,m,y6. ,
II

1 !1

TABLE II
THE CONTRIBUTION TO THE INTEGRAL 12

au, m,c au,m,y au,m,z

a “m. u “m.,., m,= u I’m=,!’,m,y - ,BV.mz,.,ml

au~g u urng, u,nl, z u Urny,ti,na,y - P %n,,.,m,

a.m. - Pv”,ml=>um - pv.%%,.m P’ Wum,w,mf

TABLE III
THE CONTtUBUTION TO THE INTEGRAL 13

B5%?%!H

TABLE IV
THE CUA COEFFICIENTS

k=o k=l k=2 k=3 k=4

ls’ order U=l ~/~ 1/2

(N=l) U=2 1/2 -1/2

2“d order 11=1 o ~1~ 1/2

(N=2) U=2 1 0 –1

~=3 o _~/2 1/2

3“ order ?l=l -1/16 -1/16 9/16 9/16

(N=3) U=2 9/16 2?/16 -9/16 -27/16 —

.u=3 9/16 -27/16 -9/16 27/16

.u=4 -1/16 1/16 9/16 -9/16

4’ h order U=l o -1/6 -1/6 2/3 2/3

(N=4) U=2 o 4/3 8/3 -4/3 -8/3

.u=3 1 0 -5 0 4

U=4 o -4/3 8/3 4/3 -8/3

?4=5 o 1/6 -1/6 -2/3 2/3

TABLE V
llrE aP, COEFFICIENTS

r II Z=o i=l
‘P=z *( Y1-Y2) ~(-y1+y2+y3 -y,)

p=y +(-$, +Z’) *( X1-Z 2-Z3+.Z,)

TABLE VI
THE bp, COEFFICIENTS

i=(l i=l

p=z ;(yl+y2-y3-y4) i(yl-y2-y3+y4)

p=y *(- Z,- Z2+Z3+Z4) *(- Z1+.T2+Z3-Z4)

are given by

‘% - : CAo[l :o[klbpzbp,Io,,+,+,+,-,,-,(L)ump, u’m’p’ —

k.1=0 ‘,

– kbP,ap,jIJ, ~+[+i_l, _l(L)

~, ~, z,~+,+J-w(L)–la b I.

-F aP,bP,JI,+J ~+[ _l,, (L)]

Y- - f C.,cu, i [~bpz~o.,+,+z-,,o(~)ump, u)m’ —

k,[=O j=()

—ap,IO,~+l+,,o(L)]

w urn, u’m’ = f cu/c%Io,k+[,,(L). (22)
k,l=O

In these, the integral 1 is given by (13) and

()
–1

L= :+: .
PI m’

The CU~ for orders 1 to 4, which are

coefficients in (4), and the up, and bPz

given by Tables IV, V, and VI.

(23)

the polynomial

coefficients are
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Lastly, the Jacobian coefficients .lI, Jz and J3 in (14) are

expressed in terms of the uPi and bPi as

J1 = byOaXO– bXOaYO

Jz = bYOaX1– bXOaY1

J3 = – aY1aXO+ aX1aYO. (24)
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